/* * Linux Interfece for Arexx Data Loggers * * (c) 2011 Martin Mares */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define LOG_PATH "/var/log/arexxd" typedef unsigned char byte; static libusb_context *usb_ctxt; static libusb_device_handle *devh; static int use_syslog; static int debug_mode; static int debug_packets; static int debug_raw_data; static void die(char *fmt, ...) { va_list args; va_start(args, fmt); if (use_syslog) vsyslog(LOG_CRIT, fmt, args); else { vfprintf(stderr, fmt, args); fprintf(stderr, "\n"); } va_end(args); exit(1); } static void log_error(char *fmt, ...) { va_list args; va_start(args, fmt); if (use_syslog) vsyslog(LOG_ERR, fmt, args); else { vfprintf(stderr, fmt, args); fprintf(stderr, "\n"); } va_end(args); } static void log_info(char *fmt, ...) { va_list args; va_start(args, fmt); if (use_syslog) vsyslog(LOG_INFO, fmt, args); else { vfprintf(stderr, fmt, args); fprintf(stderr, "\n"); } va_end(args); } static void log_pkt(char *fmt, ...) { if (!debug_packets) return; va_list args; va_start(args, fmt); vprintf(fmt, args); va_end(args); } /*** RRD interface ***/ #define SLOT_SIZE 10 // 10 seconds per averaging slot #define MAX_ARGS 20 #define MAX_ARG_SIZE 1024 static int arg_cnt; static char *arg_ptr[MAX_ARGS+1]; static char arg_buf[MAX_ARG_SIZE]; static int arg_pos; static void arg_new(void) { arg_cnt = 1; arg_pos = 0; arg_ptr[0] = "rrdtool"; } static void arg_push(const char *fmt, ...) { if (arg_cnt >= MAX_ARGS) die("MAX_ARGS exceeded"); va_list va; va_start(va, fmt); int len = 1 + vsnprintf(arg_buf + arg_pos, MAX_ARG_SIZE - arg_pos, fmt, va); if (arg_pos + len > MAX_ARG_SIZE) die("MAX_ARG_SIZE exceeded"); arg_ptr[arg_cnt++] = arg_buf + arg_pos; arg_ptr[arg_cnt] = NULL; arg_pos += len; } static void rrd_point(time_t t, int id, double val, char *unit) { char rr_name[256]; snprintf(rr_name, sizeof(rr_name), "sensor-%d.rrd", id); struct stat st; if (stat(rr_name, &st) < 0 || !st.st_size) { // We have to create the RRD log_info("Creating %s", rr_name); arg_new(); arg_push(rr_name); arg_push("--start"); arg_push("%d", (int) time(NULL) - 28*86400); arg_push("--step"); arg_push("60"); if (!strcmp(unit, "%RH")) arg_push("DS:rh:GAUGE:300:0:100"); else if (!strcmp(unit, "ppm")) arg_push("DS:ppm:GAUGE:300:0:1000000"); else arg_push("DS:temp:GAUGE:300:-200:200"); arg_push("RRA:AVERAGE:0.25:1:20160"); // Last 14 days with full resolution arg_push("RRA:AVERAGE:0.25:60:88800"); // Last 10 years with 1h resolution arg_push("RRA:MIN:0.25:60:88800"); // including minima and maxima arg_push("RRA:MAX:0.25:60:88800"); rrd_create(arg_cnt, arg_ptr); if (rrd_test_error()) { log_error("rrd_create on %s failed: %s", rr_name, rrd_get_error()); return; } } arg_new(); arg_push(rr_name); arg_push("%d:%f", t, val); rrd_update(arg_cnt, arg_ptr); if (rrd_test_error()) log_error("rrd_update on %s failed: %s", rr_name, rrd_get_error()); } /*** Transforms ***/ #define TIME_OFFSET 946681200 // Timestamp of 2000-01-01 00:00:00 static int data_point_counter; static void cooked_point(time_t t, int id, double val, char *unit, int q) { if (debug_raw_data) { struct tm tm; localtime_r(&t, &tm); char tbuf[64]; strftime(tbuf, sizeof(tbuf), "%Y-%m-%d %H:%M:%S", &tm); printf("== %s id=%d val=%.3f unit=%s q=%d\n", tbuf, id, val, unit, q); } data_point_counter++; rrd_point(t, id, val, unit); } static void raw_point(int t, int id, int raw, int q) { /* * The binary blob provided by Arexx contains an embedded XML fragment * with descriptions of all known sensor types. If you want to see it, * grep the blob for "". The meanings of the parameters are * as follows: * * m1, m2 Device type matches if (raw_sensor_id & m1) == m2 * type Unit measured by the sensor (1=Celsius, 2=RH%, 3=CO2 ppm) * dm User-visible sensor ID = raw_sensor_id & dm * i 1 if the raw value is signed * p[] Coefficients of transformation polynomial (x^0 first) * vLo, vUp Upper and lower bound on the final value * scale Scaling function: * 0 = identity (default) * 1 = 10^x * 2 = exp(x) * 3 = (x < 0) ? 0 : log10(x) * 4 = (x < 0) ? 0 : log(x) * * The raw values are transformed this way: * - sign-extend if signed * - apply the transformation polynomial * - apply the scaling function * - drop if outside the interval [vLo,vUp] * * This function applies the necessary transform for sensors we've * seen in the wild. We deliberately ignore the "dm" parameter as we want * to report different channels of a single sensor as multiple sensors. */ double z = raw; double hi, lo; char *unit; int idhi = id & 0xf000; if (idhi == 0x1000) { z = 0.02*z - 273.15; lo = -200; hi = 600; unit = "C"; } else if (idhi == 0x2000) { if (raw >= 0x8000) z -= 0x10000; z /= 128; lo = -60; hi = 125; unit = "C"; } else if (idhi == 0x4000) { if (!(id & 1)) { z = z/100 - 39.6; lo = -60; hi = 125; unit = "C"; } else { z = -2.8e-6*z*z + 0.0405*z - 4; lo = 0; hi = 100.1; unit = "%RH"; } } else if (idhi == 0x6000) { if (!(id & 1)) { if (raw >= 0x8000) z -= 0x10000; z /= 128; lo = -60; hi = 125; unit = "C"; } else { z = -3.8123e-11*z; z = (z + 1.9184e-7) * z; z = (z - 1.0998e-3) * z; z += 6.56; z = pow(10, z); lo = 0; hi = 1e6; unit = "ppm"; } } else { log_error("Unknown sensor type 0x%04x", id); return; } if (z < lo || z > hi) { log_error("Sensor %d: value %f out of range", id, z); return; } cooked_point(t + TIME_OFFSET, id, z, unit, q); } /*** USB interface ***/ static int find_device(void) { libusb_device **devlist; ssize_t devn = libusb_get_device_list(usb_ctxt, &devlist); if (devn < 0) { log_error("Cannot enumerate USB devices: error %d", (int) devn); return 0; } for (ssize_t i=0; i> xmit timed out\n"); return 0; } log_pkt(">> xmit error %d\n", err); log_error("Transmit error: %d", err); return err; } if (debug_packets) { log_pkt(">> xmit %d bytes\n", transferred); dump_packet(req); } if (err = libusb_bulk_transfer(devh, 0x81, reply, 64, &transferred, 200)) { if (err == LIBUSB_ERROR_TIMEOUT) { log_pkt("<< recv timed out\n"); return 0; } log_pkt("<< recv error %d\n", err); log_error("Receive error: %d", err); return err; } if (debug_packets) log_pkt("<< recv %d bytes\n", transferred); while (transferred < 64) reply[transferred++] = 0xff; if (debug_packets) dump_packet(reply); return 1; } static unsigned int get_be16(byte *p) { return p[1] | (p[0] << 8); } static unsigned int get_le16(byte *p) { return p[0] | (p[1] << 8); } static unsigned int get_le32(byte *p) { return get_le16(p) | (get_le16(p+2) << 16); } static void put_le16(byte *p, unsigned int x) { p[0] = x; p[1] = x >> 8; } static void put_le32(byte *p, unsigned int x) { put_le16(p, x); put_le16(p+2, x>>16); } static int parse_packet(byte *reply) { if (reply[0]) { log_error("Unknown packet type %02x", reply[0]); return 0; } int pos = 1; int points = 0; while (pos < 64) { byte *p = reply + pos; int len = p[0]; if (!len || len == 0xff) break; if (len < 9 || len > 10) { log_error("Unknown tuple length %02x", len); break; } if (pos + len > 64) { log_error("Tuple truncated"); break; } int id = get_le16(p+1); int raw = get_be16(p+3); int t = get_le32(p+5); int q = (len > 9) ? p[9] : -1; if (debug_raw_data) { printf("... %02x: id=%d raw=%d t=%d", len, id, raw, t); if (len > 9) printf(" q=%d", q); printf("\n"); } raw_point(t, id, raw, q); pos += len; points++; } return points; } static void set_clock(void) { byte req[64], reply[64]; memset(req, 0, 64); req[0] = 4; time_t t = time(NULL); put_le32(req+1, t-TIME_OFFSET); send_and_receive(req, reply); #if 0 /* * Original software also sends a packet with type 3 and the timestamp, * but it does not make any sense, especially as they ignore the sensor * readings in the answer. */ req[0] = 3; send_and_receive(req, reply); parse_packet(reply); #endif } /*** Main ***/ static volatile sig_atomic_t want_shutdown; static void sigterm_handler(int sig __attribute__((unused))) { want_shutdown = 1; } static const struct option long_options[] = { { "debug", 0, NULL, 'd' }, { "log-packets", 0, NULL, 'p' }, { NULL, 0, NULL, 0 }, }; static void usage(void) { fprintf(stderr, "Usage: arexxd [--debug] [--log-packets]\n"); exit(1); } int main(int argc, char **argv) { int opt; while ((opt = getopt_long(argc, argv, "dp", long_options, NULL)) >= 0) switch (opt) { case 'd': debug_mode++; break; case 'p': debug_packets++; debug_raw_data++; break; default: usage(); } if (optind < argc) usage(); int err; if (err = libusb_init(&usb_ctxt)) die("Cannot initialize libusb: error %d", err); // libusb_set_debug(usb_ctxt, 3); if (!debug_mode) { if (chdir(LOG_PATH) < 0) die("Cannot change directory to %s: %m", LOG_PATH); if (debug_packets || debug_raw_data) { close(1); if (open("debug", O_WRONLY | O_CREAT | O_APPEND, 0666) < 0) die("Cannot open debug log: %m"); setlinebuf(stdout); } openlog("arexxd", LOG_NDELAY, LOG_DAEMON); pid_t pid = fork(); if (pid < 0) die("fork() failed: %m"); if (pid) return 0; setsid(); use_syslog = 1; } struct sigaction sa = { .sa_handler = sigterm_handler }; sigaction(SIGTERM, &sa, NULL); sigaction(SIGINT, &sa, NULL); sigset_t term_sigs; sigemptyset(&term_sigs); sigaddset(&term_sigs, SIGTERM); sigaddset(&term_sigs, SIGINT); sigprocmask(SIG_BLOCK, &term_sigs, NULL); int inited = 0; while (!want_shutdown) { if (!find_device()) { if (!inited) { inited = 1; log_error("Data logger not connected, waiting until it appears"); } sleep(30); continue; } log_info("Listening"); time_t last_sync = 0; time_t last_show = 0; int want_stats = 0; int want_sleep = 0; data_point_counter = 0; while (!want_shutdown) { time_t now = time(NULL); if (now > last_sync + 900) { log_info("Synchronizing data logger time"); set_clock(); last_sync = now; } if (want_stats && now > last_show + 300) { log_info("Stats: received %d data points", data_point_counter); data_point_counter = 0; last_show = now; } byte req[64], reply[64]; memset(req, 0, sizeof(req)); req[0] = 3; err = send_and_receive(req, reply); if (err < 0) break; want_sleep = 1; if (err > 0 && parse_packet(reply)) want_sleep = 0; want_stats = 1; sigprocmask(SIG_UNBLOCK, &term_sigs, NULL); sleep(4); sigprocmask(SIG_BLOCK, &term_sigs, NULL); } log_info("Disconnecting data logger"); release_device(); inited = 0; } log_info("Terminated"); return 0; }